Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Bone Joint Surg Am ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512965

RESUMO

BACKGROUND: Osseointegration is essential for the long-term survival of cementless femoral stems and is dependent on periprosthetic bone quality and correct implantation technique. The aim of this study was to evaluate the 3-dimensional long-term fixation patterns of, and bone microarchitecture around, cementless hip stems. METHODS: Four specimens with varying degrees of bone quality and fixation characteristics from body donors who had received Alloclassic Zweymüller hip stems during their lifetime (mean time in situ at the time of death: 12.73 years) were evaluated with use of radiographs, high-resolution computed tomography (CT) scans, and hard-tissue histology. The CT voxel size was 85 µm, and the following parameters were calculated: total bone volume, total bone volume fraction, trabecular bone volume, trabecular bone volume fraction, cortical bone volume, cortical bone volume fraction, and cortical thickness. Bone-implant contact and canal fill index values for each Gruen zone of the specimens were calculated with use of histological samples. RESULTS: Femoral stems with apparently good cortical contact on clinical radiographs showed higher values for cortical bone volume, trabecular bone volume, and cortical thickness in the high-resolution CT analysis than femoral stems with apparently weak cortical contact on clinical radiographs. Based on the histological evaluation, the mean bone-implant contact ranged from 22.94% to 57.24% and the mean canal fill index ranged from 52.33% to 69.67% among the specimens. CONCLUSIONS: This study demonstrated different osseointegration patterns of cementless femoral stems on the basis of radiographs, high-resolution CT scans, and histological evaluation. Femora with high cortical bone volume and cortical thickness were associated with higher canal fill indices, whereas femora with low cortical bone volume and cortical thickness had lower canal fill indices and showed a characteristic corner-anchorage pattern. CLINICAL RELEVANCE: Osseointegration patterns and thus the long-term survival of cementless femoral stems are dependent on cortical bone volume and cortical thickness.

2.
Sci Rep ; 14(1): 5719, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459092

RESUMO

Prosthetic implants, particularly hip endoprostheses, often lead to stress shielding because of a mismatch in compliance between the bone and the implant material, adversely affecting the implant's longevity and effectiveness. Therefore, this work aimed to demonstrate a computationally efficient method for density-based topology optimization of homogenized lattice structures in a patient-specific hip endoprosthesis. Thus, the root mean square error (RMSE) of the stress deviations between the physiological femur model and the optimized total hip arthroplasty (THA) model compared to an unoptimized-THA model could be reduced by 81 % and 66 % in Gruen zone (GZ) 6 and 7. However, the method relies on homogenized finite element (FE) models that only use a simplified representation of the microstructural geometry of the bone and implant. The topology-optimized hip endoprosthesis with graded lattice structures was synthesized using algorithmic design and analyzed in a virtual implanted state using micro-finite element (micro-FE) analysis to validate the optimization method. Homogenized FE and micro-FE models were compared based on averaged von Mises stresses in multiple regions of interest. A strong correlation (CCC > 0.97) was observed, indicating that optimizing homogenized lattice structures yields reliable outcomes. The graded implant was additively manufactured to ensure the topology-optimized result's feasibility.


Assuntos
Artroplastia de Quadril , Prótese de Quadril , Humanos , Desenho de Prótese , Artroplastia de Quadril/métodos , Fêmur , Análise de Elementos Finitos , Estresse Mecânico
3.
J Anat ; 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38381116

RESUMO

Extant great apes are characterized by a wide range of locomotor, postural and manipulative behaviours that each require the limbs to be used in different ways. In addition to external bone morphology, comparative investigation of trabecular bone, which (re-)models to reflect loads incurred during life, can provide novel insights into bone functional adaptation. Here, we use canonical holistic morphometric analysis (cHMA) to analyse the trabecular morphology in the distal femoral epiphysis of Homo sapiens (n = 26), Gorilla gorilla (n = 14), Pan troglodytes (n = 15) and Pongo sp. (n = 9). We test two predictions: (1) that differing locomotor behaviours will be reflected in differing trabecular architecture of the distal femur across Homo, Pan, Gorilla and Pongo; (2) that trabecular architecture will significantly differ between male and female Gorilla due to their different levels of arboreality but not between male and female Pan or Homo based on previous studies of locomotor behaviours. Results indicate that trabecular architecture differs among extant great apes based on their locomotor repertoires. The relative bone volume and degree of anisotropy patterns found reflect habitual use of extended knee postures during bipedalism in Homo, and habitual use of flexed knee posture during terrestrial and arboreal locomotion in Pan and Gorilla. Trabecular architecture in Pongo is consistent with a highly mobile knee joint that may vary in posture from extension to full flexion. Within Gorilla, trabecular architecture suggests a different loading of knee in extension/flexion between females and males, but no sex differences were found in Pan or Homo, supporting our predictions. Inter- and intra-specific variation in trabecular architecture of distal femur provides a comparative context to interpret knee postures and, in turn, locomotor behaviours in fossil hominins.

4.
Orthop Traumatol Surg Res ; 110(1): 103594, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36921758

RESUMO

BACKGROUND: Fractures to the fifth's metatarsal (MT-V) diaphysis are common. These are inconsistently referred to as diaphyseal-, shaft-, or Dancer's fractures. A comprehensive analysis of the MT-V fracture morphology is missing. The aim was to qualitatively and quantitatively analyze fracture patterns of MT-V diaphyseal fractures. HYPOTHESIS: Fractures to the shaft of the fifth metatarsal feature specific fracture morphologies. MATERIALS AND METHODS: Retrospective, radiologic database study. Included were all acute, isolated MT-V shaft fractures (including the proximal [Lawrence and Botte (L&B) III] and distal meta-diaphysis). Demographics and fracture characteristics were assessed. Each proximal fracture line was drawn, scaled, and a qualitative and quantitative fracture line analysis was conducted. The quantitative fracture line analysis aimed at identifying dens clusters with arbitrary shape using the DBSCAN algorithm. Data are presented as mean±standard deviation. RESULTS: Out of 704 eligible MT-V fractures, 156 met the inclusion criteria. Patient's mean age was 46±19 years and 94% suffered a low energy trauma. Qualitative and quantitative fracture line analysis revealed three distinct fracture patterns. The proximal (30%) and distal (5%) meta-diaphyseal clusters showed a predominant transverse fracture pattern. The vast majority of diaphyseal fractures (56%) were spiral/oblique fractures, progressing from the proximal lateral meta-diaphyseal region in an oblique course at 61±9° to the medial distal diaphyseal cortex. Seven percent of diaphyseal fractures showed a transverse fracture pattern. DISCUSSION: Based on a qualitative and quantitative analysis of all MT-V shaft fractures, three distinct fracture clusters were identified with homogeneous fracture patterns. MT-V shaft fractures should therefore be classified as proximal meta-diaphyseal (L&B Type III), diaphyseal (oblique or transverse) and distal meta-diaphyseal. LEVEL OF PROOF: IV; retrospective database study.


Assuntos
Traumatismos do Pé , Fraturas Ósseas , Ossos do Metatarso , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Ossos do Metatarso/diagnóstico por imagem , Estudos Retrospectivos , Diáfises/diagnóstico por imagem , Diáfises/lesões ,
5.
Am J Biol Anthropol ; 183(3): e24695, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36790736

RESUMO

OBJECTIVES: Recent studies have associated subarticular trabecular bone distribution in the extant hominid first metacarpal (Mc1) with observed thumb use, to infer fossil hominin thumb use. Here, we analyze the entire Mc1 to test for interspecific differences in: (1) the absolute volume of trabecular volume fraction, (2) the distribution of the deeper trabecular network, and (3) the distribution of trabeculae in the medullary cavity, especially beneath the Mc1 disto-radial flange. MATERIALS AND METHODS: Trabecular bone was imaged using micro-computed tomography in a sample of Homo sapiens (n = 11), Pan paniscus (n = 10), Pan troglodytes (n = 11), Gorilla gorilla (n = 10) and Pongo sp., (n = 7). Using Canonical Holistic Morphometric Analysis (cHMA), we tested for interspecific differences in the trabecular bone volume fraction (BV/TV) and its relative distribution (rBV/TV) throughout the Mc1, including within the head, medullary cavity, and base. RESULTS: P. paniscus had the highest, and H. sapiens the lowest, BV/TV relative to other species. rBV/TV distribution statistically distinguished the radial concentrations and lack of medullary trabecular bone in the H. sapiens Mc1 from all other hominids. H. sapiens and, to a lesser extent, G. gorilla also had a significantly higher trabecular volume beneath the disto-radial flange relative to other hominids. DISCUSSION: These results are consistent with differences in observed thumb use in these species and may also reflect systemic differences in bone volume fraction. The trabecular bone extension into the medullary cavity and concentrations beneath the disto-radial flange may represent crucial biomechanical signals that will aid in the inference of fossil hominin thumb use.


Assuntos
Hominidae , Ossos Metacarpais , Humanos , Animais , Ossos Metacarpais/diagnóstico por imagem , Polegar , Microtomografia por Raio-X , Pan troglodytes , Gorilla gorilla , Pongo , Pan paniscus
6.
Comput Methods Programs Biomed ; 236: 107549, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37084528

RESUMO

BACKGROUND AND OBJECTIVE: Measuring physiological loading conditions in vivo can be challenging, as methods are invasive or pose a high modeling effort. However, the physiological loading of bones is also imprinted in the bone microstructure due to bone (re)modeling. This information can be retrieved by inverse bone remodeling (IBR). Recently, an IBR method based on micro-finite-element (µFE) modeling was translated to homogenized-FE (hFE) to decrease computational effort and tested on the distal radius. However, this bone has a relatively simple geometry and homogeneous microstructure. Therefore, the objective of this study was to assess the agreement of hFE-based IBR with µFE-based IBR to predict hip joint loading from the head of the femur; a bone with more complex loading as well as more heterogeneous microstructure. METHODS: hFE-based IBR was applied to a set of 19 femoral heads using four different material mapping laws. One model with a single homogeneous material for both trabecular and cortical volume and three models with a separated cortex and either homogeneous, density-dependent inhomogeneous, or density and fabric-dependent orthotropic material. Three different evaluation regions (full bone, trabecular bone only, head region only) were defined, in which IBR was applied. µFE models were created for the same bones, and the agreement of the predicted hip joint loading history obtained from hFE and µFE models was evaluated. The loading history was discretized using four unit load cases. RESULTS: The computational time for FE solving was decreased on average from 500 h to under 1 min (CPU time) when using hFE models instead of µFE models. Using more information in the material model in the hFE models led to a better prediction of hip joint loading history. Inhomogeneous and inhomogeneous orthotropic models gave the best agreement to µFE-based IBR (RMSE% <14%). The evaluation region only played a minor role. CONCLUSIONS: hFE-based IBR was able to reconstruct the dominant joint loading of the femoral head in agreement with µFE-based IBR and required considerably lower computational effort. Results indicate that cortical and trabecular bone should be modeled separately and at least density-dependent inhomogeneous material properties should be used with hFE models of the femoral head to predict joint loading.


Assuntos
Cabeça do Fêmur , Fêmur , Análise de Elementos Finitos , Fêmur/fisiologia , Remodelação Óssea , Articulação do Quadril
7.
J Mech Behav Biomed Mater ; 140: 105740, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36863197

RESUMO

Computational predictions of stiffness and peri-implant loading of screw-bone constructs are highly relevant to investigate and improve bone fracture fixations. Homogenized finite element (hFE) models have been used for this purpose in the past, but their accuracy has been questioned given the numerous simplifications, such as neglecting screw threads and modelling the trabecular bone structure as a continuum. This study aimed to investigate the accuracy of hFE models of an osseointegrated screw-bone construct when compared to micro-FE models considering the simplified screw geometry and different trabecular bone material models. Micro-FE and hFE models were created from 15 cylindrical bone samples with a virtually inserted, osseointegrated screw (fully bonded interface). Micro-FE models were created including the screw with threads (=reference models) and without threads to quantify the error due to screw geometry simplification. In the hFE models, the screws were modelled without threads and four different trabecular bone material models were used, including orthotropic and isotropic material derived from homogenization with kinematic uniform boundary conditions (KUBC), as well as from periodicity-compatible mixed uniform boundary conditions (PMUBC). Three load cases were simulated (pullout, shear in two directions) and errors in the construct stiffness and the volume average strain energy density (SED) in the peri-implant region were evaluated relative to the micro-FE model with a threaded screw. The pooled error caused by only omitting screw threads was low (max: 8.0%) compared to the pooled error additionally including homogenized trabecular bone material (max: 92.2%). Stiffness was predicted most accurately using PMUBC-derived orthotropic material (error: -0.7 ± 8.0%) and least accurately using KUBC-derived isotropic material (error: +23.1 ± 24.4%). Peri-implant SED averages were generally well correlated (R2 ≥ 0.76), but slightly over- or underestimated by the hFE models and SED distributions were qualitatively different between hFE and micro-FE models. This study suggests that osseointegrated screw-bone construct stiffness can be predicted accurately using hFE models when compared to micro-FE models and that volume average peri-implant SEDs are well correlated. However, the hFE models are highly sensitive to the choice of trabecular bone material properties. PMUBC-derived isotropic material properties represented the best trade-off between model accuracy and complexity in this study.


Assuntos
Parafusos Ósseos , Osso Esponjoso , Fixação de Fratura , Osseointegração , Fenômenos Biomecânicos , Osso Esponjoso/fisiopatologia , Análise de Elementos Finitos , Osseointegração/fisiologia , Fixação de Fratura/instrumentação , Fixação de Fratura/métodos
8.
J Orthop Res ; 41(8): 1774-1780, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36694475

RESUMO

Recently, promising results have been reported for detection of osteoporosis with use of an aluminum phantom. Therefore, the aim of this study was to evaluate the feasibility of radiography-based bone mineral density (BMD) measurement using a graded aluminum phantom. This study included 27 postmenopausal women with a distal radius fracture. Aluminum phantom radiography of the healthy radius was conducted as well as high-resolution peripheral quantitative computed tomography (HR-pQCT) measurement of the ultradistal radius and dual energy X-ray absorptiometry (DXA) of the radius, spine, and hip. A strong correlation was observed between aluminum phantom radiography-based mean gray value (mGV) and DXA-derived BMD, especially for the ultradistal radius (ρ = 0.75; p < 0.001). A moderate correlation for the femoral neck (ρ = 0.61 and p < 0.001) between modalities was found. Radius mGV and HR-pQCT-derived BMD only showed a moderate correlation (ρ = 0.48; p < 0.09). Aluminum phantom radiography might serve as a cost efficient, highly available, low-radiation dose screening, and diagnostic method for osteoporosis additively to DXA measurements. Especially, an application in areas with constrained DXA availability and such as preoperative trauma settings would be beneficial. However, further investigation and assessment of specificity and sensitivity is needed.


Assuntos
Fraturas Ósseas , Osteoporose Pós-Menopausa , Osteoporose , Feminino , Humanos , Absorciometria de Fóton/métodos , Rádio (Anatomia)/diagnóstico por imagem , Alumínio , Pós-Menopausa , Estudos de Viabilidade , Osteoporose/diagnóstico por imagem , Densidade Óssea , Osteoporose Pós-Menopausa/complicações , Osteoporose Pós-Menopausa/diagnóstico por imagem
9.
J Mech Behav Biomed Mater ; 139: 105664, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36657193

RESUMO

Despite significant improvements in terms of the predictive ability of Quantitative Computed Tomography based Finite Element (QCT-FE) models in estimating femoral strength (fracture load and stiffness), no substantial clinical adoption of this method has taken place to date. Narrowing the wide variability of FE results by standardizing the methodology and validation protocols, as well as reducing the uncertainties in the FEA process have been proposed as routes towards improved reliability. The aim of this study was to: First, validate a QCT-FE model of proximal femoral stiffness in multiple stance load cases, and second, using a parametric approach, determine the influence of select experimental and modeling parameters on the predictive ability of our model. Ten fresh frozen human femoral samples were tested in neutral stance, 15° adducted and 15° abducted load cases. Voxel-based linear-elastic QCT-FE models of the samples were generated to predict the models' stiffness values in all load cases. The base FE models were validated against the experimental results using linear regression. Thirty six deviated models were created using the minimum and maximum values of experiment-based "plausible range" for 18 parameters in 4 categories of embedding, loading, material, and segmentation. The predictive ability of the models were compared in terms of the coefficient of determination (R2) of the linear regression between the measured and predicted stiffness values in all load cases. Our model was capable of capturing 90% of the variation in the experimental stiffness of the samples in neutral stance position (R2 = 0.9, concordance correlation coefficient (CCC) = 0.93, percent root mean squared error (RMSE%) = 8.4%, slope and intercept not significantly different from unity and zero, respectively). Embedding and loading categories strongly affected the predictive ability of the models with an average percent difference in R2 of 4.36% ± 2.77 and 2.96% ± 1.69 for the stance-neutral load case, respectively. The performance of the models were significantly different in adducted and abducted load cases with their R2 dropping to 71% and 70%, respectively. Similarly, off-axes load cases were affected by the parameters differently compared to the neutral load case, with the loading parameter category imposing more than 10% difference on their R2, larger than all other categories. We also showed that automatically selecting the best performing plausible value for each parameter and each sample would result in a perfectly linear correlation (R2> 0.99) between the "tuned" model's predicted stiffness and experimental results. Based on our results, high sensitivity of the model performance to experimental parameters requires extra diligence in modeling the embedding geometry and the loading angles since these sources of uncertainty could dwarf the effects of material modeling and image processing parameters. The results of this study could help in improving the robustness of the QCT-FE models of proximal femur by limiting the uncertainties in the experimental and modeling steps.


Assuntos
Fêmur , Fraturas Ósseas , Humanos , Reprodutibilidade dos Testes , Incerteza , Análise de Elementos Finitos , Fêmur/diagnóstico por imagem
10.
J Mech Behav Biomed Mater ; 138: 105631, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36592570

RESUMO

Digital volume correlation (DVC) enables to evaluate the ability of µFE models in predicting experimental results on the mesoscale. In this study predicted displacement fields of three different linear and materially nonlinear µFE simulation methods were compared to DVC measured displacement fields at specific load steps in the elastic regime (StepEl) and after yield (StepUlt). Five human trabecular bone biopsies from a previous study were compressed in several displacement steps until failure. At every compression step, µCT images (resolution: 36 µm) were recorded. A global DVC algorithm was applied to compute the displacement fields at all loading steps. The unloaded 3D images were then used to generate homogeneous, isotropic, linear and materially nonlinear µFE models. Three different µFE simulation methods were used: linear (L), nonlinear (NL), and nonlinear stepwise (NLS). Regarding L and NL, the boundary conditions were derived from the interpolated displacement fields at StepEl and StepUlt, while for the NLS method nonlinear changes of the boundary conditions of the experiments were captured using the DVC displacement field of every available load step until StepEl and StepUlt. The predicted displacement fields of all µFE simulation methods were in good agreement with the DVC measured displacement fields (individual specimens: R2>0.83 at StepEl and R2>0.59 at StepUlt; pooled data: R2>0.97 at StepEl and R2>0.92 at StepUlt). At StepEl, all three simulation methods showed similar intercepts, slopes, and coefficients of determination while the nonlinear µFE models improved the prediction of the displacement fields slightly in all Cartesian directions at StepUlt (individual specimens: L: R2>0.59 and NL, NLS: R2>0.68; pooled data: L: R2>0.92 and NL, NLS: R2>0.94). Damaged/overstrained elements in L, NL, and NLS occurred at similar locations but the number of overstrained elements was overestimated when using the L simulation method. Considering the increased solving time of the nonlinear µFE models as well as the acceptable performance in displacement prediction of the linear µFE models, one can conclude that for similar use cases linear µFE models represent the best compromise between computational effort and accuracy of the displacement field predictions.


Assuntos
Osso Esponjoso , Humanos , Fenômenos Biomecânicos , Análise de Elementos Finitos , Estresse Mecânico , Biópsia , Microtomografia por Raio-X
11.
Ann Biomed Eng ; 51(5): 925-937, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36418745

RESUMO

Inverse bone (re)modeling (IBR) can infer physiological loading conditions from the bone microstructure. IBR scales unit loads, imposed on finite element (FE) models of a bone, such that the trabecular microstructure is homogeneously loaded and the difference to a target stimulus is minimized. Micro-FE (µFE) analyses are typically used to model the microstructure, but computationally more efficient, homogenized FE (hFE) models, where the microstructure is replaced by an equivalent continuum, could be used instead. However, also the target stimulus has to be translated from the tissue to the continuum level. In this study, a new continuum-level target stimulus relating relative bone density and strain energy density is proposed. It was applied using different types of hFE models to predict the physiological loading of 21 distal radii sections, which was subsequently compared to µFE-based IBR. The hFE models were able to correctly identify the dominant load direction and showed a high correlation of the predicted forces, but mean magnitude errors ranged from - 14.7 to 26.6% even for the best models. While µFE-based IBR can still be regarded as a gold standard, hFE-based IBR enables faster predictions, the usage of more sophisticated boundary conditions, and the usage of clinical images.


Assuntos
Rádio (Anatomia) , Tomografia Computadorizada por Raios X , Análise de Elementos Finitos , Tomografia Computadorizada por Raios X/métodos , Rádio (Anatomia)/fisiologia , Densidade Óssea
12.
J Biomech ; 143: 111279, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36095913

RESUMO

Boundary conditions (BCs) are often simplified in experimental and numerical models simulating distal radius fractures and their treatments. The aim of this study was to investigate the effects of simplified BCs at the radiocarpal joint: (1) on the stress distribution in the intact distal radius, and (2) on the loading of a volar locking plate (VLP) used for distal radius fracture treatment. Finite element models of the distal radius with contact between carpals and cartilage were created as reference models for an intact bone and a fractured bone with VLP treatment. Four models with simplified BCs were compared to these reference models: One with embedding material instead of carpals, one with carpals tied to the radius; each loaded either uniaxially or with statically equivalent loading to the reference model. Differences in distal bone stress distributions and mechanical parameters of the VLP (fracture gap movement, plate peak stresses, distal screw loads) were generally largest for the uniaxially loaded, embedded model (up to 250 % in individual screw loads) and smallest for the model with tied carpals and statically equivalent loads (<25 % for all parameters). Differences were greatly reduced if statically equivalent loads were applied, but subchondral stress peaks were absent without carpals. In conclusion, implementing realistic resultant forces and moments is more important than the exact articular load distribution, but carpal bones should be included if subchondral bone stresses are analyzed. In this case, a tie constraint may replace articular contact modelling with acceptable accuracy if statically equivalent loading is applied.


Assuntos
Fraturas do Rádio , Rádio (Anatomia) , Fenômenos Biomecânicos , Placas Ósseas , Fixação Interna de Fraturas , Humanos , Fraturas do Rádio/cirurgia
13.
Sci Rep ; 12(1): 5187, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35338187

RESUMO

Bone is a remarkable, living tissue that functionally adapts to external loading. Therefore, bone shape and internal structure carry information relevant to many disciplines, including medicine, forensic science, and anthropology. However, morphometric comparisons of homologous regions across different individuals or groups are still challenging. In this study, two methods were combined to quantify such differences: (1) Holistic morphometric analysis (HMA) was used to quantify morphometric values in each bone, (2) which could then be mapped to a volumetric mesh of a canonical bone created by a statistical free-form deformation model (SDM). Required parameters for this canonical holistic morphometric analysis (cHMA) method were identified and the robustness of the method was evaluated. The robustness studies showed that the SDM converged after one to two iterations, had only a marginal bias towards the chosen starting image, and could handle large shape differences seen in bones of different species. Case studies were performed on metacarpal bones and proximal femora of different primate species to confirm prior study results. The differences between species could be visualised and statistically analysed in both case studies. cHMA provides a framework for performing quantitative comparisons of different morphometric quantities across individuals or groups. These comparisons facilitate investigation of the relationship between spatial morphometric variations and function or pathology, or both.


Assuntos
Osso Esponjoso , Fêmur , Animais , Osso e Ossos , Osso Esponjoso/diagnóstico por imagem , Primatas
14.
Sensors (Basel) ; 21(18)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34577474

RESUMO

BACKGROUND: The preparation of bone for the insertion of an osseointegrated transfemoral implant and the insertion process are performed at very low speeds in order to avoid thermal damages to bone tissue which may potentially jeopardize implant stability. The aim of this study was to quantify the temperature increase in the femur at different sites and insertion depths, relative to the final implant position during the stepwise implantation procedure. METHODS: The procedure for installation of the osseointegrated implant was performed on 24 femoral specimens. In one specimen of each pair, the surgery was performed at the clinically practiced speed, while the speed was doubled in the contralateral specimen. Six 0.075 mm K fine gauge thermocouples (RS Components, Sorby, UK) were inserted into the specimen at a distance of 0.5 mm from the final implant surface, and six were inserted at a distance of 1.0 mm. RESULTS: Drilling caused a temperature increase of <2.5 °C and was not statistically significantly different for most drill sizes (0.002 < p < 0.845). The mean increase in temperature during thread tapping and implant insertion was <5.0 °C, whereas the speed had an effect on the temperature increase during thread tapping. CONCLUSIONS: Drilling is the most time-consuming part of the surgery. Doubling the clinically practiced speed did not generate more heat during this step, suggesting the speed and thus the time- and cost-effectiveness of the procedure could be increased. The frequent withdrawal of the instruments and removal of the bone chips is beneficial to prevent temperature peaks, especially during thread tapping.


Assuntos
Prótese Ancorada no Osso , Implantes Dentários , Temperatura Corporal , Osso e Ossos , Temperatura Alta , Temperatura , Termômetros
15.
Med Eng Phys ; 93: 72-82, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34154777

RESUMO

Ultimate force of the proximal human femur can be predicted using Finite Element Analysis (FEA), but the models rely on 3D computed tomography images. Landmark-based statistical appearance models (SAM) and B-Spline transformation-based statistical deformation models (SDM) have been used to estimate 3D images from 2D projections, which facilitates model generation and reduces the radiation dose. However, there is no literature on the accuracy of SDM-based FEA models of bones with respect to experimental results. In this study, a methodology for an enhanced SDM with textural information is presented. The statistical deformation and texture models (SDTMs) are based on a set of 37 quantitative CT (QCT) images. They were used to estimate 3D images from two or one projections of the set in a leave-one-out setup. These estimations where then used to create FEA models. The ultimate force predicted by FEA models estimated from two or one projection using the SDTMs were compared to the experimental ultimate force from a previous study on the same femora and to the results of standard QCT-based FEA models. High correlations between predictions and experimental measurements were found for FEA models reconstructed from 2D projections with R2=0.835 when based on two projections and R2=0.724 when using one projection. The correlations were comparable to those reached with standard QCT-based FE-models with the experimental results (R2=0.795). This study shows the high potential of SDTM-based 3D image reconstruction and FEA modelling from 2D projections to predict femoral ultimate force.


Assuntos
Fêmur , Tomografia Computadorizada por Raios X , Fêmur/diagnóstico por imagem , Análise de Elementos Finitos , Humanos , Imageamento Tridimensional , Modelos Estatísticos
16.
Clin Biomech (Bristol, Avon) ; 82: 105272, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33493739

RESUMO

BACKGROUND: Using fewer distal screws in volar plate fixation of distal radius fractures could reduce treatment costs and complications. However, there is currently no consensus on the ideal screw configuration, likely due to experimental limitations and its subject-specific nature. In this study, finite element analysis was used to investigate (1) if reducing the number of screws is biomechanically feasible and (2) if an optimal screw configuration is subject-specific. METHODS: Validated subject-specific finite element models of 16 human radii with extra articular distal radius fractures and volar plate fixation with six distal screws were used as a baseline. 41 additional configurations with three to six distal screws were simulated for each subject. Axial stiffness and peri-implant strains around the distal screws were evaluated. Subject-specific optimum configurations were determined using a lower bound for the axial stiffness and minimizing peri-implant strains. FINDINGS: Even using three distal screws led to only minor deterioration of the biomechanical properties in the best configuration (axial stiffness: -11.2%, peri-implant strains: -35.0%), but a considerable deterioration in the worst configuration (axial stiffness: -46.2%, peri-implant strains: +112.4%). The optimization showed that the ideal screw configuration is subject-specific and on average 1.9 screws could be saved based on the herein used optimization criterion. INTERPRETATION: This study highlights that not only how many, but which screws are used in volar plate fixation of distal radius fractures is critical. Using a patient-specific selection of distal screws bears potential to save costs and reduce complications.


Assuntos
Parafusos Ósseos , Análise de Elementos Finitos , Fixação Interna de Fraturas/instrumentação , Fraturas do Rádio/cirurgia , Fenômenos Biomecânicos , Humanos
18.
Bone Rep ; 12: 100261, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32455148

RESUMO

MicroCT-based morphological parameters are often used to quantify the structural properties of trabecular bone. Various software tools are available for calculating these parameters. Studies that examine the comparability of their results are rare. Four different software tools were used to analyse a set of 701 microCT images from human trabecular bone samples. Bone volume to total volume (BV/TV), bone surface (BS), trabecular thickness (Tb. Th.) and degree of anisotropy (DA) were evaluated. BV/TV shows very low difference (-0.18 ± 0.15%). The difference in BS could be reduced below 5% if artificial cut surfaces are not included. Tb. Th. and Tb. Sp. show differences of maximal -12% although the same theoretical background is used. DA is most critical with differences from 4.75 ± 3.70% (medtool vs. Scanco), over -38.61 ± 13.15% (BoneJ vs. Scanco), up to 80.52 ± 50.04% (medtool vs. BoneJ). Quantitative results should be considered with caution, especially when comparing different studies. Introducing standardization procedures and the disclosure of underlying algorithms and their respective implementations could improve this issue.

19.
Proc Natl Acad Sci U S A ; 117(15): 8416-8423, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32229560

RESUMO

Bipedalism is a defining trait of the hominin lineage, associated with a transition from a more arboreal to a more terrestrial environment. While there is debate about when modern human-like bipedalism first appeared in hominins, all known South African hominins show morphological adaptations to bipedalism, suggesting that this was their predominant mode of locomotion. Here we present evidence that hominins preserved in the Sterkfontein Caves practiced two different locomotor repertoires. The trabecular structure of a proximal femur (StW 522) attributed to Australopithecus africanus exhibits a modern human-like bipedal locomotor pattern, while that of a geologically younger specimen (StW 311) attributed to either Homo sp. or Paranthropus robustus exhibits a pattern more similar to nonhuman apes, potentially suggesting regular bouts of both climbing and terrestrial bipedalism. Our results demonstrate distinct morphological differences, linked to behavioral differences between Australopithecus and later hominins in South Africa and contribute to the increasing evidence of locomotor diversity within the hominin clade.


Assuntos
Hominidae/fisiologia , Animais , Antropologia , Evolução Biológica , Fêmur/anatomia & histologia , Fêmur/fisiologia , Fósseis/história , História Antiga , Hominidae/anatomia & histologia , Humanos , Locomoção , África do Sul
20.
J R Soc Interface ; 17(164): 20200032, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32126191

RESUMO

The analysis of internal trabecular and cortical bone has been an informative tool for drawing inferences about behaviour in extant and fossil primate taxa. Within the hand, metacarpal bone architecture has been shown to correlate well with primate locomotion; however, the extent of morphological differences across taxa is unexpectedly small given the variability in hand use. One explanation for this observation is that the activity-related differences in the joint loads acting on the bone are simply smaller than estimated based on commonly used proxies (i.e. external loading and joint posture), which neglect the influence of muscle forces. In this study, experimental data and a musculoskeletal finger model are used to test this hypothesis by comparing differences between climbing and knuckle-walking locomotion of captive bonobos (Pan paniscus) based on (i) joint load magnitude and direction predicted by the models and (ii) proxy estimations. The results showed that the activity-related differences in predicted joint loads are indeed much smaller than the proxies would suggest, with joint load magnitudes being almost identical between the two locomotor modes. Differences in joint load directions were smaller but still evident, indicating that joint load directions might be a more robust indicator of variation in hand use than joint load magnitudes. Overall, this study emphasizes the importance of including muscular forces in the interpretation of skeletal remains and promotes the use of musculoskeletal models for correct functional interpretations.


Assuntos
Ossos Metacarpais , Pan paniscus , Animais , Locomoção , Articulação Metacarpofalângica , Caminhada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...